
Assembler Language Assembler Language
"Boot Camp""Boot Camp"

Part 5 - Decimal and Part 5 - Decimal and
Logical InstructionsLogical Instructions

SHARE 116 in AnaheimSHARE 116 in Anaheim
March 3, 2011March 3, 2011

IntroductionIntroduction

Who are we?

John Ehrman, IBM Software Group

John Dravnieks, IBM Software Group

Dan Greiner, IBM Systems & Technology Group

IntroductionIntroduction

Who are you?
An applications programmer who needs to write
something in mainframe assembler?
An applications programmer who wants to
understand z/Architecture so as to better
understand how HLL programs work?
A manager who needs to have a general
understanding of assembler?

Our goal is to provide for professionals an
introduction to the z/Architecture assembler
language

IntroductionIntroduction

These sessions are based on notes from a
course in assembler language at Northern
Illinois University

The notes are in turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

1-4

IntroductionIntroduction

The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

ASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

IntroductionIntroduction

Both ASSIST and ASSIST/I are in the public
domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

Everything we discuss here works the same
in z/Architecture

Both ASSIST and ASSIST/I are available at
http://www.kcats.org/assist

IntroductionIntroduction

ASSIST-V is also available now, at
http://www.kcats.org/assist-v

Other materials described in these sessions
can be found at the same site, at
http://www.kcats.org/share

Please keep in mind that ASSIST, ASSIST/I,
and ASSIST-V are not supported by Penn
State, NIU, NESI, or any of us

IntroductionIntroduction

Other references used in the course at NIU:
Principles of Operation (PoO)
System/370 Reference Summary
High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally
online at the IBM publications web site

Students use the S/370 "green card" booklet
all the time, including during examinations
(SA22-7209)

5-8

Our Agenda for the WeekOur Agenda for the Week
Assembler Boot Camp (ABC) Part 1: Numbers
and Basic Arithmetic (Monday - 11:00 a.m.)

ABC Part 2: Instructions and Addressing
(Monday - 1:30 p.m.)

ABC Part 3: Assembly and Execution;
Branching (Tuesday - 1:30 p.m.)

ABC Lab 1: Hands-On Assembler Lab Using
ASSIST/I (Tuesday - 6:00 p.m.)

Our Agenda for the WeekOur Agenda for the Week

ABC Part 4: Program Structures; Arithmetic
(Wednesday - 1:30 p.m.)

ABC Lab 2: Hands-On Assembler Lab Using
ASSIST/I (Wednesday - 6:00 p.m.)

ABC Part 5: Decimal and Logical Instructions
(Thursday - 9:30 a.m.)

Agenda for this SessionAgenda for this Session

The SI and SS Instruction Formats

Decimal Arithmetic

Instructions for Logical Operations

Wrap Up

The SI and SS The SI and SS
Instruction FormatsInstruction Formats

9-12

SI InstructionsSI Instructions

This format encodes the second operand as
an "immediate" data byte within the instruction

The symbolic instruction format is
 label mnemonic address,byte

The encoded form of an SI instruction is
 hOPhOPhI2hI2 hB1hD1hD1hD1

SI InstructionsSI Instructions

MOVE IMMEDIATE is our first SI instruction

 label MVI D1(B1),I2

Stores a copy of the immediate byte, I2, at
the memory location given by D1(B1)

SI InstructionsSI Instructions
The second operand can be specified as a
decimal number or as any one-byte value valid
in DC; these are equivalent forms:

Decimal: 91
Hexadecimal: X'5B'
Binary: B'01011011'
Character: C'$'

For example, to place a single blank at PLINE

 MVI PLINE,C' '

SI InstructionsSI Instructions
The COMPARE LOGICAL IMMEDIATE
instruction compares the byte in memory to
the immediate data byte as unsigned binary
numbers

label CLI D1(B1),I2

CLI sets the condition code in the same way
as other compare instructions

13-16

SI InstructionsSI Instructions
The following code sample scans an 80-byte
data area and replaces zeros with blanks
 ...
 LA 4,CARD Start scan here
 LA 3,80 and scan 80 bytes
SCAN CLI 0(4),C'0' Look for char zero
 BNE BUMP Branch if not zero
 MVI 0(4),C' ' Change to blank
*
BUMP LA 4,1(,4) Move to next byte
 BCT 3,SCAN Continue for 80
 ...
CARD DS CL80

SS InstructionsSS Instructions
In this format, which occupies 6 bytes, both
operands reference memory locations, and
there is either one 256-byte-max length field
or two 16-byte-max length fields

The symbolic instruction format is either

 label mnemonic addr1(len),addr2
 or
 label mnemonic addr1(len1),addr2(len2)

SS InstructionsSS Instructions

Each SS instruction is defined to have one of
these formats; we will see only the first for
now

The encoded form of an SS instruction is
 hOPhOPhLhL hB1hD1hD1hD1 hB2hD2hD2hD2
 or
 hOPhOPhL1hL2 hB1hD1hD1hD1 hB2hD2hD2hD2

 hLhL and hL1hL2 are referred to as the
encoded length

SS InstructionsSS Instructions

Very Important: the encoded length is one
less than the symbolic length (which is also
the effective length); it is also referred to as
the "length code"

Thus, in the first format, 1 to 256 bytes may
be specified but 0 to 255 is encoded

An explicit length of 0 or 1 results in an
encoded length of 0, so the effective length is
1

17-20

SS InstructionsSS Instructions

MOVE CHARACTERS is our first SS
instruction

label MVC D1(L,B1),D2(B2)

Copies from 1 to 256 bytes from the second
operand location to the first

SS InstructionsSS Instructions
For example, to copy 8 bytes from the
location addressed by register 1 to 14 bytes
beyond the location addressed by register 12

Symbolic: MVC 14(8,12),0(1)
Encoded: D207 C00E 1000

Note the encoded length byte of 07!

SS InstructionsSS Instructions

Implicit addresses may be used, of course,
and with or without an explicit length

 MVC FIELD1(15),FIELD2
 MVC FIELD1,FIELD2

Both generate the same object code if
FIELD1 (the first operand) has a "length
attribute" of 15, as in

FIELD1 DS CL15

SS InstructionsSS Instructions

Any explicit length will take precedence over
the implicit length derived from the length
attribute

So, in the previous example the following
instruction will move only 8 bytes, even though
FIELD1 has a length attribute of 15
 MVC FIELD1(8),FIELD2

Implicit lengths change automatically at
reassembly when data lengths change

21-24

SS InstructionsSS Instructions

The effect of MVC is to replace L bytes
beginning at the first operand location with a
copy of the L bytes beginning at the second
operand location

The target is altered, one byte at a time,
starting on the "left" (the beginning, or low,
address)

SS InstructionsSS Instructions
This means that the fields can overlap with
predictable results, and here is an historically
important example

There is often a "print buffer" in which output
lines are constructed, and after printing a line,
the buffer should be cleared to blanks. The
following example assumes that PLINE has a
length attribute of 133, as it would if it was
defined as
PLINE DS CL133

SS InstructionsSS Instructions

So, we would normally clear the buffer by
copying a string of blanks to it
 MVC PLINE,=CL133' '

But by using the overlap, we can "save" 129
bytes
 MVI PLINE,C' '
 MVC PLINE+1(132),PLINE

SS InstructionsSS Instructions

Suppose we have
FIELD DC C'123456'

What is FIELD after
 MVC FIELD+2(4),FIELD ?

 C'121212'

25-28

SS InstructionsSS Instructions
Another SS instruction which uses the first
length format is COMPARE LOGICAL

label CLC D1(L,B1),D2(B2)

As with all compares, this just sets the
condition code

The operation stops when the first unequal
bytes are compared

Decimal ArithmeticDecimal Arithmetic

 In Which We Switch to Counting In Which We Switch to Counting
on Our Fingers or Toes on Our Fingers or Toes

Instead of Our Thumbs Instead of Our Thumbs

Decimal DataDecimal Data
Thus far, the computations we've done have
been with binary data

This is not always satisfactory, especially
when financial calculations are required

For example, decimal percentages are
inaccurate in binary (try long division on
1/1010 = 1/10102 = .000110011...)

This (infinite repetition) annoys auditors

Decimal DataDecimal Data
The solution is to use computers with decimal
data types and instructions

There are two decimal data formats

Zoned Decimal - associated with I/O
operations

Packed Decimal - used for decimal arithmetic

29-32

Decimal DataDecimal Data
A zoned decimal number is a sequence of
bytes in which each byte has
1. a decimal digit 0-9 in the right digit and
2. a zone digit (hex F) in the left digit, except that

the rightmost zone is the sign

Decimal DataDecimal Data
That is, a zoned decimal number has the
format

 ZdZdZd...sd where
Z is the zone and should be hex digit F
d is a decimal digit 0-9
s is the sign
C, A, F, or E means + (C is preferred)
D or B means - (D is preferred)

An example is F1F2C3, for +123

Decimal DataDecimal Data

A zoned number is very close to the EBCDIC
representation of its value, except that the
rightmost byte has a sign, so doesn't print as
a number

So our zoned +123 prints as 12C

Decimal DataDecimal Data

A packed decimal number has the zones
removed, and in the rightmost byte the sign is
switched with its digit; that is,
 dddddd...ds

Note that there is always an odd number of
digit positions in a packed decimal number

The assembler can generate data of types Z
(zoned) and P (packed)

33-36

Decimal DataDecimal Data

 label DC mZLn'z'
 DC Z'+123' = F1F2C3
 DC ZL3'-1.2' = F0F1D2

 label DC mPLn'p'
 DC P'+123' = 123C
 DC 2P'-1.2' = 012D012D
 DC PL2'1234' = 234C (!)

The decimal point is not assembled

The PACK and UNPK InstructionsThe PACK and UNPK Instructions

Both of these are SS instructions of the
second type

That is, each operand has a four-bit length
field which will accommodate a length code of
0-15

So the effective lengths are 1-16 bytes

The PACK and UNPK InstructionsThe PACK and UNPK Instructions
Use the PACK instruction to convert a
number from zoned decimal to packed
decimal

Use the UNPK instruction to convert a
number from packed decimal to zoned
decimal

The PACK InstructionThe PACK Instruction
 label PACK D1(L1,B1),D2(L2,B2)

The rightmost byte of the second operand is
placed in the rightmost byte of the first
operand, with zone (sign) and numeric digits
reversed

The remaining numeric digits from operand 2
are moved to operand 1, right to left, filling
with zeros or ignoring extra digits

37-40

The PACK InstructionThe PACK Instruction
PACK operates as follows when converting a
5-digit zoned number to 5 packed digits

|D5D4|D3D2|D1S|<-|ZD5|ZD4|ZD3|ZD2|SD1|

 where each 'Z' is a zone F

 PACK B(1),B(1) exchanges a byte's
digits

The PACK InstructionThe PACK Instruction
 PACK P(3),Z(4)
 P(3) <---- Z(4)
Before: ?? ?? ?? F5 F4 F3 D2
After: 05 43 2D F5 F4 F3 D2

 PACK P(2),Z(4)
 P(2) <---- Z(4)
Before: ?? ?? F5 F4 F3 C2
After: 43 2C F5 F4 F3 C2

The UNPK InstructionThe UNPK Instruction
 label UNPK D1(L1,B1),D2(L2,B2)
The rightmost byte of the second operand is
placed in the rightmost byte of the first
operand, with zone (sign) and numeric digits
reversed

The remaining numeric digits from operand 2
are placed in the numeric digits of operand 1,
and the zone digits of all but the rightmost
byte of operand 1 are set to F, filling with
X'F0' or ignoring extra digits

The UNPK InstructionThe UNPK Instruction

UNPK operates as follows when converting a
5-digit packed number to 5 zoned digits

 |ZD5|ZD4|ZD3|ZD2|SD1|<-|D5D4|D3D2|D1S|

where each 'Z' is a zone F

 UNPK B(1),B(1) exchanges a byte's
digits

41-44

The UNPK InstructionThe UNPK Instruction
 UNPK Z(5),P(3)
 Z(5) <------ P(3)
Before: ?? ?? ?? ?? ?? 12 34 5C
After: F1 F2 F3 F4 C5 12 34 5C

 UNPK Z(4),P(2)
 Z(4) <---- P(2)
Before: ?? ?? ?? ?? 12 3F
After: F0 F1 F2 F3 12 3F

The CVB and CVD InstructionsThe CVB and CVD Instructions

These two RX instructions provide
conversions between packed decimal and
binary formats

Used with PACK and UNPK, we can now
convert between zoned and binary formats

The CVB InstructionThe CVB Instruction
 label CVB R1,D2(X2,B2)

Causes the contents of R1 to be replaced by the
binary representation of the packed decimal
number in the doubleword (on a doubleword
boundary) addressed by operand 2

A data exception (0007) occurs if operand 2 is
not a valid packed decimal number

A fixed-point divide exception (0009) occurs if
the result is too large to fit in a 32-bit word

The CVB InstructionThe CVB Instruction

For example:

 CVB 3,Z
 ...
Z DS 0D
 DC PL8'-2'

will convert 000000000000002D at location Z
(data type D has doubleword alignment)
to FFFFFFFE in register 3

45-48

The CVD InstructionThe CVD Instruction

 label CVD R1,D2(X2,B2)
Causes the contents of the doubleword (on a
doubleword boundary) addressed by operand 2
to be replaced by the packed decimal
representation of the binary number in R1

Note that the "data movement" is left to right
(like ST)

The exceptions which apply to CVB (0007
and 0009) do not apply to CVD

Numeric Data Conversion SummaryNumeric Data Conversion Summary
 Data in PACK Data in CVB Data in
---> character --------> packed decimal --------> binary
 format format format
 | |
 V V
 Perform Perform
 packed binary
 arithmetic arithmetic
 | |
 V V
 Results in UNPK Results in CVD Results in
<--- zoned <-------- packed decimal <-------- binary
 format EDIT format format

Getting results in nice character format, instead
of just zoned, requires use of EDIT instruction

Decimal ArithmeticDecimal Arithmetic

The box on the previous slide encloses the
only subject which remains to be covered:
decimal arithmetic

There isn't enough time to cover the decimal
arithmetic instructions in detail, but they all
have the following characteristics

Decimal ArithmeticDecimal Arithmetic

Two memory operands, each with its own
length

Condition code is set similar to binary
equivalents

In almost all cases (except operand 1 in
ZAP), the operands must be valid packed
decimal numbers, else an interrupt 0007
occurs (very popular!)

49-52

Decimal ArithmeticDecimal Arithmetic
Here are the available instructions

AP - ADD DECIMAL
CP - COMPARE DECIMAL
DP - DIVIDE DECIMAL
MP - MULTIPLY DECIMAL
SRP - SHIFT AND ROUND DECIMAL
SP - SUBTRACT DECIMAL
ZAP - ZERO AND ADD DECIMAL

With the possible exception of SRP, these are
easy to understand - see PoO

Instructions for Instructions for
Logical OperationsLogical Operations

 To Which We Must Say Yes To Which We Must Say Yes
or Noor No

The Logical OperationsThe Logical Operations

Consider the four possible combinations of 2
bits, a and b
 a = 0 0 1 1
 b = 0 1 0 1

These lead to the following binary relations

 a AND b = 0 0 0 1
 a OR b = 0 1 1 1
 a XOR b = 0 1 1 0

The Logical OperationsThe Logical Operations

And these relations lead to the following
twelve new instructions:

RR
Format

RX
Format

SI
Format

SS
Format

AND
Operation NR N NI NC

OR
Operation OR O OI OC

XOR
Operation XR X XI XC

53-56

The Logical OperationsThe Logical Operations

anything
with itself zero one

AND It remains
unchanged

It is
changed to

zero

It remains
unchanged

OR It remains
unchanged

It remains
unchanged

It is
changed to

one

XOR
It is

changed to
zero

It remains
unchanged

It is
inverted

The Logical OperationsThe Logical Operations
All twelve instructions set the condition code:

0 - Result is zero
1 - Result is not zero

The Logical OperationsThe Logical Operations
As an example, to change a zoned decimal
number to EBCDIC, we have to force the
rightmost zone to be F instead of a sign

So, if ZNUM is a three-byte zoned number,
the following instruction will make it printable
(why?):

 OI ZNUM+2,X'F0'
 ...
ZNUM DC Z'123' (X'F1F2C3')

The Logical OperationsThe Logical Operations
To zero a register, we normally use SR, but a
faster way to zero R5 (for example) is
 XR 5,5

To set bit 0 of BYTE to 1 while leaving the
other bits unchanged
 OI BYTE,B'10000000'

To set bit 0 of BYTE to 0 while leaving the
other bits unchanged
 NI BYTE,B'01111111'

57-60

The Logical OperationsThe Logical Operations
To invert bit 0 of BYTE to 1 while leaving the
other bits unchanged
 XI BYTE,B'10000000'

To round the address in R7 down to the
previous fullword boundary
 N 7,=X'FFFFFFFC'

To round it up to the next fullword boundary
 LA 7,3(,7)
 N 7,=X'FFFFFFFC'

The Logical OperationsThe Logical Operations

To exchange the contents of two registers
without using any temporary space, use XR
three times, alternating registers

Memory contents can be exchanged similarly
by using XC instead of XR

 XR 2,3 Exchange
 XR 3,2 contents of
 XR 2,3 registers 2 and 3

The Logical OperationsThe Logical Operations

How does that exclusive-OR trick work?
XC A,B
 Original A: 1101 0001 (X'D1', EBCDIC "J")
 Original B: 1100 0101 (X'C5', EBCDIC "E")
 New A: 0001 0100
XC B,A
 Original B: 1100 0101
 New A: 0001 0100
 New B: 1101 0001 (X'D1', EBCDIC "J")
XC A,B
 New A: 0001 0100
 New B: 1101 0001
 New-New A: 1100 0101 (X'C5', EBCDIC "E")

The TEST UNDER MASK InstructionThe TEST UNDER MASK Instruction
 label TM D1(B1),I2

TM sets the condition code to reflect the
value of the tested bits (those corresponding
to 1-bits in the I2 operand)

0 - Selected bits all zeros, or the I2 mask was
zero
1 - Selected bits mixed zeros and ones
2 - --- (not set)
3 - Selected bits all ones

61-64

The TEST UNDER MASK InstructionThe TEST UNDER MASK Instruction

Note that after TM, the extended branch
mnemonics are interpreted as

BZ - Branch if tested bits are Zeros, or mask is
zero
BM - Branch if tested bits are Mixed zeros and
ones
BO - Branch if tested bits are Ones

The TEST UNDER MASK InstructionThe TEST UNDER MASK Instruction

To determine if the first bit of BYTE is one
 TM BYTE,B'10000000'

To check if BYTE is binary zero (X'00') or
blank (X'40')
 TM BYTE,B'10111111'
 BZ BLKZRO

Wrap Up Wrap Up

 In Which We Learn That In Which We Learn That
Only a Small Fraction of the Only a Small Fraction of the

Assembler Language Has Assembler Language Has
Been Covered Been Covered

SummarySummary

Five hours is just a start, but a good one

The one-semester course at NIU has
More than 35 hours of lecture
A dozen programs (almost one each week)
Three exams

The second course is Data Structures, and all
program assignments are in assembler

This is good reinforcement
Uses HLASM rather than Assist

65-68

What Wasn't CoveredWhat Wasn't Covered

Shift instructions, logical and arithmetic

Frequently used, but difficult instructions
Edit (ED) and Edit and Mark (EDMK)
Execute (EX)
Translate (TR) and Translate and Test (TRT)

Floating point instructions
Hexadecimal (the original)
Binary (IEEE standard, recently added)
Decimal (recently added)

What Wasn't CoveredWhat Wasn't Covered

Many general instructions added over the
past twenty-five years, such as

Relative BRANCH instructions (no base register
needed)
Instructions which reference a halfword
(immediate) operand within the instruction
Instructions to save and set the addressing
mode (24-bit or 31-bit)
And, most recently, the z/Architecture
instructions to deal with 64-bit registers and
addresses, and long displacements

What Wasn't CoveredWhat Wasn't Covered

Privileged instructions

The macro language, including conditional
assembly (also available outside macros)

The USING instruction, extended to allow
implicit addresses everywhere

External subroutines and register save area
linkage conventions

Nevertheless...Nevertheless...

You now have a basic understanding of
z/Architecture

You have seen what comprises a program
written in assembler language

And you are ready, if you wish, to begin
writing programs and go on to the next step

So, ...

69-72

Congratulations!Congratulations!

73-76

